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In this report, we describe the formation of a pentacoordinate
high-spin heme-peroxo-Cu complex, [(F8TPP)FeIII-(O2

2-)-
CuII(TMPA)]+ (2),1 formed upon addition of O2 to a 1:1 mixture
of the reduced heme complex (F8TPP)FeII (1a) and copper
complex [(TMPA)CuI(CH3CN)]+ (1b) {Scheme 1}. Remarkably,
mixing of dioxygen with Fe and Cu mononuclear components2-5

leads to the heterobinuclear complex2, in preference to homobi-
nuclearµ-peroxo orµ-oxo heme-only3,6 or copper-only prod-
ucts.4,5,7 The present system provides significant new electronic,
structural, and mechanistic advances into the dioxygen chemistry
of heme-Cu systems. Insights obtained may have relevance to
heme-copper oxidase O2-binding and reduction,8-11 other chem-
istries or biochemistries involving dioxygen-binding to met-
als,8,12,13O2-activation (e.g., cytochrome P-450 monooxygenase,14

copper complex O2-reactivity,5,15,16 and Cu monooxygenas-
es15,17,18), and O-O reductive cleavage.

Upon addition of dioxygen at-40 °C in MeCN solvent to an
equimolar solution of (F8TPP)FeII (1a)3,19 and [(TMPA)CuI(CH3-
CN)](ClO4) (1b)4 {reduced spectrum:λmax ) 414 (sh), 421 (Soret),
526 nm}, UV-visible spectroscopy (Figure 1) reveals the
formation of a new species{λmax ) 412 (Soret), 558 nm}

We formulate this O2-adduct as the peroxo complex [(F8TPP)-
FeIII-(O2

2-)-CuII(TMPA)]+ (2) based upon the following: (1)
The resonance Raman spectrum of2 (Figure 2A) presents a
peroxo O-O stretching vibration at 808 cm-1 that downshifts
by 46 cm-1 with 18O-labeled dioxygen (Figure 2B). In the
scrambled isotope experiment, the16O-18O stretch corresponds
to a single component at 785 cm-1 (Figure 2C), and indicates
that the peroxide species is bound in a symmetric fashion. (2)
MALDI-TOF-MS of 2 (formed in MeCN solvent) gives a parent
peak atm/z 1239 {(M - ClO4

- + MeCN)+} when 16O2 is
employed.20 The expected increase in mass of 4 is observed when
2 forms from18O2, m/z1243. (3) Dioxygen-uptake measurements
{spectrophotometric titration: MeCN,-40 °C} revealed an
oxygenation stoichiometry of1a:1b:O2 ) 1:1:1.

Further characterization of [(F8TPP)FeIII-(O2
2-)-CuII(TMPA)]+

(2) comes from NMR spectroscopy.21 In MeCN at-40 °C, the
(F8TPP)FeII/[(TMPA)CuI(CH3CN)]+ system (1a:1b ) 1:1) has a
single pyrrole resonance atδ 10 ppm (Figure 3A), consistent with
a low spin (S ) 0) system{Evans NMR method,µB ) 0}.
Oxygenation of the1a/1b mixture leads to a downfield shifting
of the pyrrole resonances22 for 2 (Figure 3B: δpyrrole ) 68 ppm,
s, br), with upfield shifted pyridyl peak resonances also observed
at-11 and-20 ppm. An overallS) 2 spin state for2 is assigned
(Evans method,µB ) 5.1, -40 °C), arising from the antiferro-
magnetic coupling of the S) 5/2 high spin ferric heme to theS
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) 1/2 copper(II) through the bridging peroxide ligand.23,24We have
previously observed and reported this characteristic pattern of
downfield shifted pyrrole resonances and upfield shifted peaks
in similar (P)FeIII-X-CuII (X ) O2

2-, O2-) systems (including
3, Scheme 1) havingS ) 2 spin states.19,23,24 In fact, thermal
decomposition of2 yieldsµ-oxo complex [(F8TPP)FeIII-O-CuII-
(TMPA)]+ (3) {Scheme 1;µB ) 5.1, Evans method,-40 °C,
λmax ) 433 (Soret), 553 nm}, with previously assigned down-

field shifted pyrrole resonances (δ 83 ppm), and upfield shifted
peaks at- 11 (pyridyl 5-H) and- 28 (pyridyl 3-H) ppm (Figure
3C).6,24

The electronic structure of complex2 was further probed by
Mössbauer spectroscopy (4.2 K, zero field), which shows a sharp
quadrupole doublet (Figure S1) with parameters{∆EQ ) 1.14
mm/s,δ ) 0.57 mm/s} typical for high-spin ferric compounds.
The isomer shift is significantly larger than those (0.33-0.45 mm/
s) observed for high-spin ferric-heme compounds,25 and is
consistent with binding of an electron-rich peroxide ligand.26 The
magnetic field dependence (data not shown) is also consistent
with 2 being an integer spin system.27 Porphyrin skeletal modes
in the high-frequency region of the resonance Raman spectra
confirm these conclusions, and reveal a pentacoordinate high-
spin configuration of the heme iron in the peroxo intermediate2
(data not shown).

Stopped-flow UV-visible spectroscopy (500-700 nm moni-
toring, acetone,-94 to-75°C) revealed the presence of a heme-
superoxo (F8TPP)FeIII-(O2

-) intermediate3,19 {λmax ) 537 nm},
formed within mixing time (∼1 ms) prior to formation of the
heme-peroxo-Cu complex2 {λmax ) 556 nm}, with little or no
Cu-only O2-adducts observed. The overall kinetics are complicated
by 2-3 side reactions with minor absorbance changes, but the
main 537 f 556 nm heme-superoxo to heme-peroxo-Cu
transformation can be reasonably described by a first-order rate
constant with∆Hq ) 45 ( 1 kJ mol-1 and ∆Sq ) -19 ( 6 J
mol-1 K-1 (k ) 0.07 s-1, - 90 °C, k ) 0.32 s-1, - 80 °C).

As mentioned,µ-peroxo complex [(F8TPP)FeIII-(O2
2-)-CuII-

(TMPA)]+ (2) transforms thermally to theµ-oxo complex [(F8-
TPP)FeIII-O-CuII(TMPA)]+ (3). We find that this occurs in a
slow reaction{t1/2 ) 1016 ( 20 s; MeCN, 22°C, 0.28 mM},
with concomitant release of 0.40-0.45 equiv of O2.28 Given the
1a + 1b + O2 f 2 stoichiometry (vide supra), and that the
subsequent decomposition of2 yielding 3 releases∼0.5 equiv
O2, the fate of all oxygen atoms in the formation and decomposi-
tion of 2 is known. The mechanism of O-O reductive cleavage
in the transformation2 f 3 + 1/2 O2 will be the object of future
study.29

In conclusion, complex [(F8TPP)FeIII-(O2
2-)-CuII(TMPA)]+

(2) contains a symmetrically bound peroxide (i.e., most likely
µ-1,2 orµ-η2:η2) in a high-spin heme-Cu antiferromagnetically
coupled S ) 2 system. The resonance Raman mixed-isotope
experiment, the Mo¨ssbauer spectroscopic data, the stopped-flow
kinetics, and the observation of O2 evolution in the crudely
biomimetic reductive O-O cleavage reaction{i.e., thermal
decomposition of2} are all significant new advances.
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Figure 1. UV-visible spectra of the (F8TPP)FeII (1a)/[(TMPA)CuI(CH3-
CN)](ClO4) (1b) oxygenation reaction in MeCN at-40 °C.

Figure 2. Resonance Raman spectra of [(F8TPP)FeIII -(O2
2-)-CuII-

(TMPA)]+ (2), formed by oxygenation of (F8TPP)FeII/[(TMPA)CuI(CH3-
CN)]+ (1a:1b ) 1:1) in MeCN at-40 °C using16O2 (A), a scrambled
mixed-isotope gas containing 25%16O2, 50% 16O-18O, and 25%18O2

(B), and a pure18O2 gas (C). All spectra were obtained at room
temperature with a 413 nm excitation in MeCN solvent. The difference
spectra A minus C, and A minus B are also shown as traces D and E,
respectively.

Figure 3. 1H NMR spectra (400 MHz, CD3CN, -40 °C) of heme-
copper complexes. See text for further explanation.
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